Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Alekhya Penumarthi

RMIT University, Australia

Title: Utilising novel nanoparticles for DNA vaccine delivery

Biography

Biography: Alekhya Penumarthi

Abstract

Most DNA vaccines are effective in eliciting immune responses without any side effects. The main criterion for a successful DNA vaccine is to have an efficient delivery system which can deliver it safely to the target cells. There are several successful delivery systems for DNA vaccines til date; however no standard system is in place. For effective DNA vaccination, targeting antigen presenting cells would be important. In this proof of concept study two novel delivery systems 1) yeast transposon virus like particles (Ty-VLPs) and 2) solid lipid nanoparticles (SLNs) were chosen to study their potential to carry DNA vaccines invitro to dendritic cells using eGFP plasmid as the reporter plasmid. Ty-VLPs are transposition vehicles in S. cerevisiae and were also observed to perform the same function in vitro. Ty-VLPs were purified and plasmid DNA conjugated with them. These complexes were transfected into DC 2.4 cells and analysed by flow cytometry for GFP expression. The transfection efficiency of these complexes was shown to increase compared to plasmid alone. The effect of incubation time for complex formation on transfection efficiency was also studied. Positively charged Solid lipid nanoparticles were synthesised and conjugated with DNA to form complexes. It was shown that there is a 10 fold increase in the transfection rate using these complexes in DC 2.4 cells over plasmid alone and is comparable to that mediated by lipofectamine.